H(t)=16t^2+30t+4

Simple and best practice solution for H(t)=16t^2+30t+4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(t)=16t^2+30t+4 equation:



(H)=16H^2+30H+4
We move all terms to the left:
(H)-(16H^2+30H+4)=0
We get rid of parentheses
-16H^2+H-30H-4=0
We add all the numbers together, and all the variables
-16H^2-29H-4=0
a = -16; b = -29; c = -4;
Δ = b2-4ac
Δ = -292-4·(-16)·(-4)
Δ = 585
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{585}=\sqrt{9*65}=\sqrt{9}*\sqrt{65}=3\sqrt{65}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-29)-3\sqrt{65}}{2*-16}=\frac{29-3\sqrt{65}}{-32} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-29)+3\sqrt{65}}{2*-16}=\frac{29+3\sqrt{65}}{-32} $

See similar equations:

| 2x=36x-18 | | 2(6x-2)=-4(-3x+1) | | 2g^2+56g+50=0 | | 9x^2=-54 | | r^2-14r-17=0 | | 8x+10+7x=430 | | 8x+10+7=430 | | -3+2x=-3–5x | | -3x-1=5x-33 | | 10=96-v | | 2(x-8)=3(x-7) | | 8x-9+7x=100 | | 7(x–2)+3x=46 | | 5n-40=-2 | | 9(7+v)=207 | | 18p-44=0 | | 4x+89=128 | | -50=5(r+7) | | -t^2-12t=32 | | 66-m=47 | | 3a–7=8a+8 | | 1. 3a–7=8a+8 | | 23x-17×-42=2(2×-6) | | -5(-3x+1)=145 | | -3(5y+10)=30 | | 2x°=86° | | 2+12x+12-4x=182 | | 0.24x=3.84 | | y^2+13y+30=y-3 | | 25+0.50x=30+0.25x | | 19=a+4 | | 2x*x=85 |

Equations solver categories